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Modeling Methods. Our model of memory capacity in bits per item
is based on work by Landauer (1), who provided a method for
estimating the number of bits required to correctly make a
decision about which items have been seen and which have not.
This simple model assigns each picture a random code (b bits
long), rather than assign them based on visual similarity. If a foil
item is assigned the same code as any old item, the old item
cannot be distinguished from the foil. Because this is a two-
alternative forced-choice task, an error will occur on one half of
these cases. Given this model we can compute the length of code
(in bits) necessary to achieve any given accuracy level for a given
number of items.

For example, to achieve 88% correct with 1,000 items in
memory, you must have a code at least 11.9 bits long (3,821
possible codes). The chance of a new item being assigned a code
that overlaps an old item would then be 23% ([1 � 1/3,821]1,000),
and on half of trials observers would still answer correctly,
resulting in 12% errors, or 88% correct performance. In general,
the number of bits is related to memory performance in this
model by the following equation: b � �log2[1 � (2p � 1)1/n],
where p is the percentage correct, and n is the number of items
in memory.

If this model is capturing a systematic property of memory,
similar estimates for the number of bits should be obtained by
using different numbers of pictures in memory (because perfor-
mance should increase correspondingly). Supporting this, Land-
auer (1) found that similar calculations result in estimates of 10.0
bits with 20 pictures in memory and 99% correct judgments, 10.2
bits with 400 pictures in memory and 86% correct judgments, etc.
By using this model, we find observers must have 13.8 bits of
information per item based on our novel condition (92% correct
with 2,500 pictures in memory). This suggests that the maximum
capacity of memory, if all items were coded by using the optimal
set of features (decision-level bits), would be 213.8 (14,000)
unique items.

To model the exemplar and state results, we make the
assumption that memory is organized hierarchically, such that
the bits for the category appear before the bits for the exemplar
per state, resulting in greater similarity in the codes (and greater
chance of confusion) for items within a category than items in
different categories. In the exemplar condition, observers are
holding one item of the category in memory and this results in
�87.5% correct. If observers have two bits of exemplar-level
information about each studied item, then the probability of the
a foil exemplar overlapping with a studied item would be 25%
(1/22), resulting in 12.5% error trials, thus 87.5% correct per-
formance, matching our empirical results. The same logic holds
in the state condition which also has �87.5% performance.
Thus, our overall estimate of memory capacity is 17.8 bits per
item, where 13.8 bits are required to code the category of the
object, and the additional four bits per item are required to code
which exemplar (two bits) and state (two bits) the object is to

successfully distinguish it from the foils. This suggests that
maximum number of unique items that can be put in memory
(assuming an optimal feature set) is 217.8, or 228,000.

This model, in which the exemplar bits are separate from the
category bits, is more conservative than giving unique codes
without regard to category, since it accounts for the idea that we
are more likely to confuse two teacups than a teacup and a
tractor. However, our calculations do assume that the exemplar
and state conditions draw on different bits, such that the
information used to perform well in the exemplar tests is not the
same as the information used for the state tests. This is com-
patible with memory representations in which it is possible to
know that you saw an open door rather than a closed door (state
condition) without knowing exactly which door it was (exemplar
condition). However, even if up to half of the information was
shared between the exemplar and state condition, we would still
obtain an estimate of 16.8 bits of information, or 114,000 unique
codes, still an order of magnitude over previous estimates.

A previous study by Hollingworth (2) also examined object
representations on the order of hundreds of images. Participants
were shown scenes with many embedded objects and were
subsequently tested with exemplar-level foil items. To quantify
the capacity of memory estimated in this experiment, we used the
same hierarchical model. This study did not include a novel test
condition to estimate the category bits, so we assumed a gen-
erous 99% performance, giving 14.27 bits. Performance in the
exemplar level tests was 65%, or an additional 0.5 bits. Thus we
estimate the memory capacity demonstrated in Hollingworth (2)
between 14–15 bits, approximately equal to the estimates arrived
at by Landauer (1). Interestingly, this study demonstrates that
memory can store hundreds of objects with exemplar-level
fidelity, and even this does not guarantee an increased estimate
of memory capacity.

The hierarchical decision-level model is based on the number
of items studied, and importantly, on the number of questions
asked about each item. Previous large-scale memory studies only
tested against a novel foil (one question). Here, we ask about
novel, exemplar, and state comparisons (three questions, thus
three sets of bits). Our estimate of memory capacity could be
increased even further if more questions were asked about what
kind of information observers have about remembered items.
However, there is an important caution to this modeling ap-
proach: the questions asked about each item are probably not
independent. For example, we could have included a fourth kind
of test asking about the orientation of the presented object, and
added more bits to the estimated code of each item. However,
information about the state is probably also informative about
orientation. Thus, asking 1,000 different questions to show an
enormous memory capacity estimate is not sufficient because
such questions will likely have overlapping information when
considered under the true coding model of the visual system. On
a positive note, if one could ask the right set of completely
independent questions, one might be approximating the visual
coding scheme.
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Fig. S1. Performance on detecting repeat images during the 5.5 h study session. Images were repeated with a different number of intervening items, from
0 to 1,023, by powers of 2.
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